Optimization-Based Modeling:

A New Strategy for the Compatible Discretization and Scalable Solution of Multiphysics Problems

Pavel Bochev

Numerical Analysis and Applications
Sandia National Laboratories

Exascale Research Conference, April 16-18, 2012, Portland

Supported in part by

Outline

- Research drivers
- Why optimization?
- Applications of Optimization-Based Modeling
 - Abstract theory of optimization based operator splitting
 - Application to synthesis of solvers
 - Robust and efficient optimization-based monotone transport

Key Collaborators

K. Peterson SNL

D. Ridzal SNL

J. Young SNL

M. Shashkov LANL

M. Gunzburger FSU

Research Drivers

Robust and efficient solution of multiphysics problems

Dominant solution strategy for multiphysics, multiscale problems for 30+ years:

1st order operator splitting, decoupled nonlinear solution methods, semiimplicit and explicit time integration.

This strategy is rapidly approaching a point of diminishing returns because

- 1) It lacks the stability properties for simulations over dynamic scales of interest
- 2) It often relies on heuristics to control the splitting errors
- 3) Is prone to non-intuitive instabilities

DOE Town Hall Report

Compatible discretization of multiphysics problems

The advanced state of **single physics discretizations** contrasts sharply with the **limited mathematical understanding** of compatible discretizations for multiphysics problems:

- 1) Lack of formal mathematical theory to guide the compatible discretization.
- 2) Physics components have disparate mathematical structures, which calls for mutually exclusive discretization and/or solver strategies.
- 3) Direct preservation of physical properties imposes severe grid/space constraints and tangles accuracy with the preservation of the properties.

Synthesis of Discretizations and Solvers

Challenges:

$$\partial_t u = (L_1 + L_2)u$$

Typically, L_1 and L_2 have different mathematical structures

$$\partial_t u^h = (L_1 + L_2)^h u^h$$

$$L_1^h$$
 L_2^h

Stable compatible methods may exist for L_1 and L_2 but not for the composite problem:

$$(L_1 + L_2)^h \neq L_1^h + L_2^h$$

$$\left(L_1^h
ight)^{-1} \quad \left(L_2^h
ight)^{-1}$$

Efficient solvers may exist for L_1 and L_2 but not for the composite problem

$$((L_1 + L_2)^h)^{-1} = ?$$

Traditional approaches: regularization, operator splitting

- ⇒ tunable parameters **reduce robustness**
- ⇒ splitting errors reduce accuracy & stability

Preservation of Physical Properties

Challenges:

$$\partial_t u = Lu$$

Generally, discretization does not automatically preserve constraints, even with stabilization/regularization

$$\partial_t u^h = L^h u^h$$

$$C \le Cu \le \overline{C}$$

In multiphysics codes this solution is input for another physics component

$$Bu = b$$

Automatic preservation of maximum principle, local and global bounds, is required for robust, predictive simulations

$$Bu^h = b$$

Traditional approaches: limiters, "repair", special grids, ...

- ⇒ limiters & repair entangle constraints & accuracy and obscure sources of discretization errors
- ⇒ special grids **reduce the scope** of the methods

Optimization-based modeling (OBM)

Our approach: a divide and conquer strategy

Use **optimization and control ideas** to **manage externally** those objectives that are **difficult** (or impractical) to handle **directly** in the discretization process by manipulating the grid, the formulation, or the reconstruction.

Potential payoffs

- Elimination of splitting errors: reformulation into an equivalent optimization problem
- Elimination of limiters: lifts the associated restrictions on cell types & accuracy
- Balancing of constraints: accuracy, mass conservation, monotonicity, variable bounds...
- Generality with respect to problem discretization: applicable to FE, FV and FD schemes as well as particle methods, on mixed n-D grids
- □ Generality with respect to problem type: elliptic, hyperbolic, ...
- Enable efficient reuse of existing codes: solvers, optimization tools,...

Synthesis of discretizations and solvers as an optimization problem

Objective	Constraints
Reconcile approximate solutions of the single physics operator equations	Enforce constituent component physics

References

- "Optimization-based approach for robust solution algorithms", Bochev, Ridzal, SINUM, 2009
- "Additive operator decomposition", Bochev, Ridzal, Springer LNCS 5910, 2010
- "Optimization-based domain decomposition", M. Gunzburger, 1997
- "Decomposition of everything", J.L. Lyons, 2001

Preservation of physical properties as an optimization problem

Objective	Constraints
Match a discrete target solution having the best possible accuracy	Enforce lost physical properties

minimize
$$\frac{1}{2} \| u^h - u_T^h \|^2$$
subject to
$$\begin{cases} \underline{C} \le C u^h \le \overline{C} \\ \partial_t u_T^h = L^h u_T^h \end{cases}$$

- ← Match target field
- Enforce constraints
- **←** Define target field

References

- "Optimization based remap", Bochev, Ridzal, Scovazzi, Shashkov JCP, 2011
- "Optimization-based transport", Parts 1-3, Bochev, Peterson, Ridzal, Young, LNCS 2012

Abstract theory of additive operator splitting

Reformulation of $Q(u, v) = \langle f, v \rangle$ as a constrained optimization problem

$$\min J(u_1,u_2) = \frac{1}{2} \left\| u_1 - u_2 \right\|_U^2 \text{ subject to } \begin{cases} Q_1 \big(u_1, v_1 \big) - \big(\theta, v_1 \big)_V = \big\langle f, v_1 \big\rangle & \forall v_1 \in V \\ Q_2 \big(u_2, v_2 \big) + \big(\theta, v_2 \big)_V = 0 & \forall v_2 \in V \end{cases} \quad \Rightarrow \quad \theta - \text{virtual control}$$

Theorem

Assume that the additive split $Q(u,v) = Q_1(u,v) + Q_2(u,v)$ is such that

$$\sup_{v \in V} \frac{Q_i(u,v)}{\|v\|_V} \ge \underline{\gamma_i} \|u\|_U \quad \sup_{u \in U} \frac{Q_i(u,v)}{\|u\|_U} > 0 \quad \text{and} \quad Q_i(u,v) \le \overline{\gamma_i} \|u\|_U \quad \forall u \in U, \forall v \in V$$

There exist unique optimal solution (u_1, u_2, θ) and $u = u_1 = u_2$ where $Q(u, v) = \langle f, v \rangle$.

Notable facts

- Optimization exposes the constituent components of the multiphysics operator
- Optimization problem is well-posed without control penalty
- As a result, original and reformulated problems are completely equivalent

There's no splitting error!

Application: Synthesis of Fast Solvers

Assumptions

$$Q(u,v) = Q_1(u,v) + Q_2(u,v)$$

 $Q(u,v) = Q_1(u,v) + Q_2(u,v)$ Fast and efficient solvers exist for Q_1 and Q_2

Approach: solve the equivalent reduced-space optimization problem

$$\min J(\vec{u}_1, \vec{u}_2) = \frac{1}{2} (\vec{u}_1 - \vec{u}_2)^T \mathbf{U} (\vec{u}_1 - \vec{u}_2) \text{ s.t. } \begin{cases} \mathbf{Q}_1 \vec{u}_1 - \mathbf{V} \vec{\theta} = \vec{f} \\ \mathbf{Q}_2 \vec{u}_2 + \mathbf{V} \vec{\theta} = \vec{0} \end{cases} \implies \min J_{RED}(\vec{\theta}) = \frac{1}{2} \vec{\theta}^T \mathbf{H}_{RED} \vec{\theta} - \vec{\theta}^T \vec{f}_{RED}$$

Algorithm:

Equation	Compute	Solve Properties		
Adjoint	$\vec{y}_1 = \mathbf{V}\vec{\theta}$	$\mathbf{Q}_1 \vec{x}_1 = \vec{y}_1, \mathbf{Q}_2 \vec{x}_2 = \vec{y}_1$	Concurrency: state and adjoint can be solved independently.	
State	$\vec{y}_2 = \mathbf{U}(\vec{x}_1 - \vec{x}_2)$	$\mathbf{Q}_1^T \vec{x}_3 = \vec{y}_2, \mathbf{Q}_2^T \vec{x}_4 = -\vec{y}_2$	Efficiency: application of H_{RED} only	
$\mathbf{H}_{RED}\vec{\theta} = \vec{f}_{RED}$	$\mathbf{H}_{RED}\vec{\theta} = \mathbf{V}(\vec{x}_3 + \vec{x}_4)$		requires inversion of operators for which fast solvers exist.	

Application to an advection-diffusion problem

Additive split $\gamma = 1$

$Q_1(u,v)$ = Diffusion	$Q_2(u,v)$ = -Diffusion
$\gamma \left(\nabla u^h, \nabla v^h \right) + \left(\mathbf{b} \cdot \nabla u^h, v^h + \tau \mathbf{b} \cdot \nabla v^h \right)$	$(\kappa - \gamma) \Big(\nabla u^h, \nabla v^h \Big) - \Big\langle \kappa \Delta u^h, \tau \mathbf{b} \cdot \nabla v^h \Big\rangle_h$

Synthesized solver

GMRES(200)	ML ^{SGS}	ML ^{SGS}
$\mathbf{H}_{RED}\vec{\theta} = \vec{f}_{RED}$	$\mathbf{Q}_1 \mathbf{Q}_1^T$	$\mathbf{Q}_2 \mathbf{Q}_2^T$

Elman/Silvester/Wathen: "double-glazing" **b** ≠ *const*

Essentially fixed cost

Study	Fixed diffusion: 10 ⁻⁸			Fixed grid size: 128		
Solver Ψ	64	128	256	10-2	10-4	10-8
Synthesized	114	97	77	62	97	97
ML ^{SGS}	97	ST	ST	11	ST	ST
ML ^{ILU}	71	196	MX	9	96	196
BAMG	72	457	MX	7	33	457

BAMG= Boomer AMG from hypre (LLNL) ML = Trilinos AMG (Sandia)

Optimization-based monotone transport (OBT)

Mass is conserved in Lagrangian volumes: $\frac{d}{dt}m_i(t) = \frac{d}{dt}\int_{\kappa_i(t)}^{\infty} \rho(x)dV = 0$

Transport = incremental mass/density remap

Bochev, Ridzal, Young, Peterson. *Optimization-based modeling with applications to transport Parts 1-3,* **Springer Lecture Notes in Computer Science**, *LNCS 7116, 2012.*

Mass/density remap as an optimization problem

The exact mass on new cell $\tilde{\kappa}_i$ can be expressed in aggregate mass-transfer form:

$$\tilde{m}_i^{EX} = m_i^{EX} + \delta m_i^{EX}; \quad \delta m_i^{EX} = \int_{\kappa_i} \rho(x) dV - \int_{\kappa_i} \rho(x) dV$$

Therefore, the mass on the new cell $\tilde{\kappa}_i$ can be approximated by

$$\tilde{m}_i^h = m_i^h + \delta m_i^h$$
, where $\delta m_i^h = \int_{\tilde{\kappa}_i} \rho_i^h(x) dV - \int_{\kappa_i} \rho_i^h(x) dV \approx \delta m_i^{EX}$

C1: Mass conservation. Requires a single linear constraint:

$$\sum_{Cell} \delta m_i^h = 0 \quad \Rightarrow \quad \sum_{Cell} \tilde{m}_i^h = M$$

C2: Linearity preservation. Guaranteed if ρ_i^h is exact for linear functions on all κ_i :

$$\delta m_i^T = \int_{\tilde{\kappa}_i} \rho_i^h(x) dV - \int_{\kappa_i} \rho_i^h(x) dV$$
 Target (**high-order**) mass-transfers

C3: Local bounds
$$\Rightarrow \delta \tilde{m}_i^{min} \leq \sum_{cell} \delta m_i^h \leq \delta \tilde{m}_i^{max}$$
 $i = 1,...,N$ Box constraints

Mass/density remap as a QP

OBT = "singly linearly constrained QP with simple bounds"

minimize
$$\sum_{Cell} \left(\delta m_i^h - \delta m_i^T \right)^2$$
 subject to
$$\delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max} \quad i = 1, ..., N$$

$$\sum_{Cell} \delta m_i^h = 0$$
C2

C3

C1

Theorem.

Existence of unique optimal solutions.

The OBT feasible set is non-empty: given a density distribution there exists a set of aggregate mass transfers δm_i^h which satisfy the box constraints and sum up to zero.

Preservation of linearity.

Under mild conditions on the mesh motion, OBT preserves linear densities.

Fast Optimization Algorithm for OBT

Key property of singly linearly constrained QP with simple bounds:

minimize
$$\sum_{Cell} \left(\delta m_i^h - \delta m_i^T \right)^2 \quad \text{subject to}$$

$$\delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max}; i = 1, ..., N \quad \text{and} \quad \sum_{Cell} \delta m_i^h = 0$$

Without the equality constraint the QP is fully separable into *N* one-dimensional QPs with simple bounds

The Lagrangian

$$L(\delta m, \lambda, \mu_1, \mu_2) = \sum_{Cell} \left(\delta m_i^h - \delta m_i^T \right)^2 - \lambda \sum_{Cell} \delta m_i^h - \sum_{Cell} \mu_{1,i} (\delta m_i^h - \delta \tilde{m}_i^{min}) - \sum_{Cell} \mu_{2,i} (\delta m_i^h - \delta \tilde{m}_i^{max})$$

The Karush-Kuhn-Tucker (KKT) conditions

$$\begin{cases} \delta m_i^h = \delta m_i^T + \lambda + \mu_{1,i} - \mu_{2,i} \\ \delta \tilde{m}_i^{min} \leq \delta m_i^h \leq \delta \tilde{m}_i^{max} \\ \mu_{1,i} \geq 0, \quad \mu_{2,i} \geq 0 \\ \mu_{1,i} (\delta m_i^h - \delta \tilde{m}_i^{min}) = 0, \\ \mu_{2,i} (\delta m_i^h - \delta \tilde{m}_i^{max}) = 0 \end{cases}$$
 and
$$\sum_{Cell} \delta m_i^h = 0$$

Without the equality constraint the KKT conditions are fully separable and can be solved in parallel for any fixed value of λ .

Fast Optimization Algorithm for OBT

Step 1: solve for λ fixed

$$\begin{split} \delta m_i^h &= \delta m_i^T + \lambda & \mu_{1,i} &= 0 & \mu_{2,i} &= 0 & \text{if} & \delta \tilde{m}_i^{min} \leq \delta m_i^T + \lambda \leq \delta \tilde{m}_i^{max} \\ \delta m_i^h &= \delta \tilde{m}_i^{min} & \mu_{2,i} &= 0 & \mu_{1,i} &= \delta m_i^h - \delta m_i^T - \lambda & \text{if} & \delta \tilde{m}_i^{min} \geq \delta m_i^T + \lambda \\ \delta m_i^h &= \delta \tilde{m}_i^{max} & \mu_{1,i} &= 0 & \mu_{2,i} &= \delta m_i^T - \delta m_i^h + \lambda & \text{if} & \delta m_i^T + \lambda \geq \delta \tilde{m}_i^{max} \end{split}$$

$$\delta m_i^h(\lambda) = median(\delta \tilde{m}_i^{min}, \delta m_i^T + \lambda, \delta \tilde{m}_i^{max}); \quad i = 1, ..., N$$

Step 2: adjust λ in an outer iteration to satisfy the single equality constraint

Solve
$$\sum_{Cell} \delta m_i^h(\lambda) = 0$$

piecewise linear, monotonically increasing function of single scalar variable λ .

- Can solve to machine precision by a simple secant method
- Globalization is unnecessary because λ_0 =0 is an excellent initial guess:

$$\delta m_i^h(\lambda_0) = median(\delta \tilde{m}_i^{min}, \delta m_i^T, \delta \tilde{m}_i^{max}); \quad i = 1,, N$$

- $\delta m_i^h(\lambda_0)$ solves the QP without the equality constraint, i.e., "almost" a solution
- Locality $\Rightarrow \delta m_i^h(\lambda_0)$ barely violates the mass conservation constraint

OBT with adaptive targets

OBT always finds the best possible (optimal) solution w.r.t. the targets

We can improve OBR/T solution by using targets, which adapt to local solution features

Adaptive target definition

Use residual information to modify targets depending on local solution features

Because OBR/OBT completely separates reconstruction and bounds enforcement,

Target fluxes can **adapt to problem features** without concern for the bounds – the QP constraints will take care to enforce the bounds later!

OBT with adaptive targets: cylinder

Rotating cylinder

$$u = -(y - 0.5)$$
 $v = (x - 0.5)$

Grid size: NxN, N=45

Time steps: $2\pi N$ 282

Initial

0.8

OBT with adaptive targets: combo

Rotating flow example (LeVeque, SINUM 33, 1996)

$$u = -(y - 0.5)$$
 $v = (x - 0.5)$

OBT is as efficient as explicit transport

Matlab wall-clock times on a 3.06GHz Intel Core Duo MacBook Pro

"Cone"

Cells	Time steps	FCR (sec)	Van Leer	OBT	OBT/FCR
64x64	400	4.59	4.50	4.92	1.1
128x128	810	44.64	47.25	48.62	1.1
256x256	1,610	387.88	393.64	403.23	1.0
512x512	3,220	5,715.08	5,804.66	5655.06	0.9

"Combo"

	Cells	Time steps	FCR (sec)	Van Leer	OBT	OBT/FCR
•	64x64	400	4.51	4.55	4.98	1.1
	128x128	810	47.60	48.35	48.78	1.0
5	256x256	1,610	390.47	399.15	405.92	1.0
	512x512	3,220	5802.05	5804.66	5,655.11	0.9

Yet, OBT has superior robustness and accuracy

Preservation of monotonicity

	C=5	C=6	C=7	C=14	C=15	C=16	C=100
OBT	✓	V	V	✓	✓	V	V
FCR	✓	~	~	X	X	X	X

0.5

Preservation of linearity

	C=3	C=4	C=5	C=15	C=16	C=100
OBT	✓	✓	✓	✓	✓	✓
FCR	✓	X	X	X	×	×

Rates of convergence

Sine & repeated repair		FC	CR	OBT		
#Cells	#remaps	L₁ error	L₁ rate	L₁ error	L₁ rate	
128x128	640	2.81E-04	-	2.77E-04	-	
256x256	1280	9.23E-05	1.61	6.82E-05	2.04	
512x512	2560	3.65E-05	1.47	1.69E-05	2.03	
1024x1024	5120	1.69E-05	1.35	4.18E-06	2.00	

Mesh motion: "Repeated repair"

Summary

A divide and conquer strategy: we use optimization ideas to separate discretization from tasks that are difficult to accomplish directly

Abstract theory for optimization-based additive operator splitting

- Increases concurrency by exposing constituent physics components
- Remove order & stability limitations (no splitting error)
- Rigorous mathematical foundations inherited from rich optimization theory
- Enables reuse of software components through synthesis of solvers and discretizations compatible with the PETSc strategy for "composable extreme-scale solvers"

Optimization-based conservative and monotone transport (OBT)

- Completely separates accuracy from the enforcement of bounds:
 - ✓ sources of error traceable!
 - √ targets can be adapted to local solution features
- OBT is global QP: yields the best possible, w.r.t. the objective, solution
 - ✓ Increases robustness: can run at higher CFL numbers
 - ✓ Increases accuracy: remains 2nd order under most challenging mesh motions
- Yet, resulting QP can be solved efficiently: cost = cost of explicit methods

